Skip to main content

Students in leadership positions learn about brain tumors and gain real world experience in running a non-profit business while raising funds for brain tumor research. Beneficiaries of the money we raise are Barrow Neurological Institute, National Brain Tumor Society, Phoenix Children's Hospital, Translational Genomics Research Institute, and University of Arizona.

"Be the change you wish to see in the world..." Gandhi

Our Beneficiaries

  • University of AZ Research Centers
    University of AZ Research Centers
  • “Do what you can, with what you have, where you are.”

    — Theodore Roosevelt

Brain Tumor Research News

Researchers at the University of Virginia School of Medicine have determined that a rare childhood cancer, medulloblastoma, forms an unexpectedly intricate network to drive its growth. Some tumor cells actually turn into another type of cell altogether. The discovery raises the exciting possibility that doctors may be able to intervene to stop the disease – and possibly other cancers as well.

Radiation oncologists at the University of Louisville have for the first time in the U.S. treated a metastatic brain tumor with intraoperative radiation therapy supplied with the use of iCAD’s Xoft Axxent Electronic Brachytherapy System.

Glioblastomas are relentless, hard-to-treat, and often lethal brain tumors. Yale scientists have enlisted a most unlikely ally in efforts to treat this form of cancer — elements of the Ebola virus. The irony is that one of the world’s deadliest viruses may be useful in treating one of the deadliest of brain cancers,”

A study published in JAMA Oncology confirmed an association between maximal resection of contrast-enhanced tumor and overall survival (OS) in patients with glioblastoma across all subgroups.

Additionally, the researchers found that maximal resection of non-contrast-enhanced tumor was associated with longer OS in younger patients, regardless of isocitrate dehydrogenase (IDH) status, and among patients with IDH-wild-type glioblastoma regardless of the methylation status of the promoter region of the DNA repair enzyme O6-methylguanine-DNA methyltransferase.

A cancer tumor's ability to mutate allows it to escape from chemotherapy and other attempts to kill it. So, encouraging mutations would not be a logical path for cancer researchers. Yet a Mayo Clinic team and their collaborators took that counterintuitive approach and discovered that while it created resistance to chemotherapy, it also made tumors sensitive to immunotherapy.

Survival may more than double for adults with glioblastoma, the most common and deadly type of brain tumor, if neurosurgeons remove the surrounding tissue as aggressively as they remove the cancerous core of the tumor.
This discovery, reported in a retrospective study headed by researchers at UC San Francisco, is welcome news for those in the glioblastoma community, which celebrated its last breakthrough in 2005 with the introduction of the chemotherapy drug temozolomide.

View Previous News Articles - Click Here!