Skip to main content

Students in leadership positions learn about brain tumors and gain real world experience in running a non-profit business while raising funds for brain tumor research. Beneficiaries of the money we raise are Barrow Neurological Institute, National Brain Tumor Society, Phoenix Children's Hospital, Translational Genomics Research Institute, and University of Arizona.

"Be the change you wish to see in the world..." Gandhi

Our Beneficiaries

  • University of AZ Research Centers
    University of AZ Research Centers
  • “The progress of the world will call for the best that all of us have to give.”

    — Mary McLeod Bethune

Brain Tumor Research News

New findings suggest that maintaining high PAR levels (and low NAD+ levels), in combination with chemotherapy, may uniquely target IDH mutant glioma cells. Considering this, Hiroaki Nagashima, MD, PhD, research fellow and lead author, devised a new treatment strategy and tested it in tumor cells and animal models.

Gliomas with mutations in what are called the isocitrate dehydrogenase (IDH) genes are the most common brain tumors diagnosed in younger adults aged 18 to 45 years. Patients can benefit from aggressive surgery, along with radiation and chemotherapy treatments, but these therapies are not curative in many cases.

In a study published in eLife, researchers described the development of the Risk Assessment Population IDentification (RAPID) tool, an open-source machine learning algorithm. The tool revealed coordinated patterns of protein expression and modification associated with survival outcomes.

Israeli researchers have succeeded in destroying breast cancer cells after developing a new treatment that "combines the application of low-frequency ultrasound and microbubbles," Tel Aviv University's Department of Biomedical Engineering announced on Thursday. "Once the ultrasound is activated, the microbubbles attach themselves to cancer cells and explode like intelligent, targeted missiles, creating holes in the cell membrane and thus allowing the drug to be delivered."

Researchers at the Department of Infection and Immunity of the Luxembourg Institute of Health (LIH) developed LIH383, a novel molecule that binds to and blocks a previously unknown opioid receptor in the brain, thereby modulating the levels of opioid peptides produced in the central nervous system (CNS) and potentiating their natural painkilling and antidepressant properties.

A noninvasive way to make a diagnosis of brain cancer would be a game-changer for both patients and healthcare practitioners, since access tumor tissue is not always possible. Another challenge in treating brain cancers is the accurate diagnosis of subtypes of brain cancers, information that is used to determine prognosis and assist in treatment planning.

View Previous News Articles - Click Here!