Skip to main content

News & Publications

Brain Tumor News Articles

News and Research MASTHEAD

Diverse Biotech, Inc. has announced it has signed an initial partnership agreement with The Preston Robert Tisch Brain Tumor Center at Duke University Medical Center to study its potential new therapeutic candidates in glioblastoma. The research will be performed in animal models of the disease to evaluate the efficacy and tissue distribution of Diverse Biotech's new drug compounds.

To help doctors differentiate between the severity of cancers in the brain, an international team of researchers built a machine learning model that uses complex mathematics to learn how various types of brain tumors look in the brain.

In a recent study published in Autophagy, researchers at Kanazawa University show how abnormalities in a gene called TPR can lead to pediatric brain cancer.

The combined analysis of texture parameters of the CARS and TPEF signal proved to be most suited for the discrimination of non-tumor brain versus brain tumors (low and high grade astrocytoma, oligodendroglioma, glioblastoma, recurrent glioblastoma, brain metastases of lung, colon, renal and breast cancer and of malignant melanoma) leading to a correct rate of 96% (sensitivity: 96%, specificity: 100%).

Treatment for patients newly diagnosed with glioblastoma varies based on the size and location of the tumor, but historically it’s been comprised of surgery, radiation and chemotherapy. The new drug trial happening at UAB is focused on a different type of therapy, Drug Resistant Immunotherapy (DRI)

The University of Alabama at Birmingham (UAB) continues to evolve as a worldwide leader in biomedicine, research and innovation. A Birmingham-based biopharmaceutical company has now announced the initiation of a Phase 1 clinical study of a novel Drug Resistant Immunotherapy (DRI) technology for the treatment of patients with newly-diagnosed glioblastoma. This trial is being conducted at UAB and is now active and open for enrollment.

In recent years, Johns Hopkins and several other academic medical centers around the world have been able to safely access tumors through brainstem safe entry zones. Yet, the benefits of aggressive resection have been unclear. Our study aimed to clarify the OS benefit among these patients.”

In research published in Science Advances, Xavier Intes, a professor of biomedical engineering at Rensselaer, joined a multidisciplinary team from Northeastern University and the Icahn School of Medicine at Mount Sinai to demonstrate a methodology that combines the bioprinting and imaging of glioblastoma cells in a cost-effective way that more closely models what happens inside the human body.

Venom, whether in snakes, scorpions or Gila monsters, are very complex chemicals. And in more than one instance, research into them has led to effective drugs.
Researchers with City of Hope have developed a chimeric antigen receptor (CAR) T cell therapy leveraging chlorotoxin (CLTX), a component of scorpion venom. In preclinical research published in Science Translational Medicine, they demonstrated that the therapeutics directed T cells to target brain tumor cells.

Researchers who discovered that an engineered cold sore virus could help destroy brain tumors from the inside out have determined a one-two punch might be the key to finish them off. This virotherapy could make a class of investigational cancer drugs more effective, according to investigators at The University of Texas Health Science Center at Houston (UTHealth).

University Hospitals is a part of a groundbreaking clinical study. It’s one of four places in the world that is working to slow the growth of malignant brain tumors, by injecting another disease in it.

MRI could help identify which patients with aggressive brain tumors might benefit from liquid biopsy, the blood test that pinpoints cancer DNA in a patient’s bloodstream. New research published today in Neuro-Oncology Advances shows that adding imaging to the mix when trying to diagnose and biopsy for glioblastoma (GBM) can help physicians determine which patients are good candidates for a liquid biopsy, as well as those who aren’t.

A new study will test a combined cancer vaccine which triggers immune responses against molecules that are expressed by GBM tumors. As it is a combined vaccine, it will target two molecules (TRP2 and WT1) which both play a significant role in GBM and are expressed in many GBM cells. It is expected that this study will provide a basis on which to move this new approach into the clinical setting.

GammaTile Therapy, marketed by GT Medical Technologies, became available to patients in January 2019 and is being used in top cancer treatment centers across the United States. It was initially approved for the treatment of recurrent brain tumors, including glioblastomas, gliomas, meningiomas, and brain metastases. The FDA expanded clearance of the technology in January to include treatment of newly diagnosed malignant brain tumors.

Scientists at the University of Pennsylvania have demonstrated that targeting a mechanism in a subset of stromal cells known as endothelial cells—which line the inside of blood vessels—might help overcome drug resistance in glioblastoma.

Yale researchers have found a way to weaponize structures from the Ebola virus in the fight against glioblastomas — ruthless brain tumors that are notoriously difficult to subdue.

Doctor has pushed the boundaries of innovation in her quest to increase the survival rates of individuals with brain tumors, especially glioblastomas. The esteemed physician-scientist has taken a truly comprehensive approach to battling this rare disease, which has a five year survival rate of only 10 percent and claimed the lives of U.S. Sens. Ted Kennedy and John McCain.

Researchers at the University of Virginia School of Medicine have determined that a rare childhood cancer, medulloblastoma, forms an unexpectedly intricate network to drive its growth. Some tumor cells actually turn into another type of cell altogether. The discovery raises the exciting possibility that doctors may be able to intervene to stop the disease – and possibly other cancers as well.

Radiation oncologists at the University of Louisville have for the first time in the U.S. treated a metastatic brain tumor with intraoperative radiation therapy supplied with the use of iCAD’s Xoft Axxent Electronic Brachytherapy System.

Glioblastomas are relentless, hard-to-treat, and often lethal brain tumors. Yale scientists have enlisted a most unlikely ally in efforts to treat this form of cancer — elements of the Ebola virus. The irony is that one of the world’s deadliest viruses may be useful in treating one of the deadliest of brain cancers,”

A study published in JAMA Oncology confirmed an association between maximal resection of contrast-enhanced tumor and overall survival (OS) in patients with glioblastoma across all subgroups.

Additionally, the researchers found that maximal resection of non-contrast-enhanced tumor was associated with longer OS in younger patients, regardless of isocitrate dehydrogenase (IDH) status, and among patients with IDH-wild-type glioblastoma regardless of the methylation status of the promoter region of the DNA repair enzyme O6-methylguanine-DNA methyltransferase.

A cancer tumor's ability to mutate allows it to escape from chemotherapy and other attempts to kill it. So, encouraging mutations would not be a logical path for cancer researchers. Yet a Mayo Clinic team and their collaborators took that counterintuitive approach and discovered that while it created resistance to chemotherapy, it also made tumors sensitive to immunotherapy.

Survival may more than double for adults with glioblastoma, the most common and deadly type of brain tumor, if neurosurgeons remove the surrounding tissue as aggressively as they remove the cancerous core of the tumor.
This discovery, reported in a retrospective study headed by researchers at UC San Francisco, is welcome news for those in the glioblastoma community, which celebrated its last breakthrough in 2005 with the introduction of the chemotherapy drug temozolomide.

Sam underwent DNA and RNA genomic sequencing at Mott to confirm which mutation was driving his cancer and help match him with an unconventional treatment to target that specific mutation. The sequencing results convinced doctors to treat the teen with a drug called everolimus – typically used to prevent rejection of organ transplants and in the treatment of renal cell cancer, not brain tumors.

Research in cell cultures and animal models suggests that scientists may be able to use a modified poliovirus to mount an immune response against brain tumor cells. Scientists know that the poliovirus is the pathogen that causes poliomyelitis, a disease that affects the central nervous system, potentially causing disability and, in the most severe cases, death.

Chinese researchers have developed robotic worms that can move through blood vessels to reach patients’ brains and directly destroy the tumors, avoiding the serious side effects of conventional treatments. According to an article in the South China Morning Post, researchers were able to create robotic worms that can travel through blood vessels to reach patients’ brains and target tumors directly.

Research in cell cultures and animal models suggests that scientists may be able to use a modified poliovirus to mount an immune response against brain tumor cells.

Using genetically engineered human pluripotent stem cells, University of California San Diego School of Medicine researchers created a new type of cancer model to study in vivo how glioblastoma, the most common and aggressive form of brain cancer, develops and changes over time.

Scientists at Baylor College of Medicine have found new evidence that glioma, a lethal form of brain cancer, alters the activity of neighboring neurons, accelerating a vicious cycle that drives tumor-associated epilepsy and tumor progression. Their findings, published in Nature, showed that several variants of the PIK3CA gene drive tumor progression and that two variants in particular alter the expression of genes involved in synapses—junctions through which neurons communicate.

Researchers are at work to find effective treatments to help young patients with brain tumors. Hundreds of brain organoids have been developed in the laboratories of the University of Trento to understand the genetic mechanisms responsible for these hard-to-treat diseases.

Using genetically engineered human pluripotent stem cells, University of California San Diego School of Medicine researchers created a new type of cancer model to study in vivo how glioblastoma, the most common and aggressive form of brain cancer, develops and changes over time.

The FDA has given the green light to an expanded indication to GT Medical’s GammaTile cancer therapy, broadening its use to patients newly diagnosed with malignant brain tumors. About the size of a postage stamp, the bioresorbable GammaTile is designed to be placed within the brain after excision surgery, to deliver local doses of radiation at the site of any remaining cancer cells.

The Israeli-developed device, called the Optune helmet, said to prevent tumor growth using electric pulses, while causing minimal damage to healthy tissue. This FDA-approved treatment comes in the form of a device that delivers Tumor Treating Fields (TTFields) for glioblastoma (GBM), an aggressive form of brain cancer.

The first successful GammaTile procedure in North Carolina was recently performed at Vidant Medical Center.
Officials announced Thursday that the procedure, done along with East Carolina University's Brody School of Medicine, delays aggressive tumor regrowth for patients with brain tumors.

Cancer remains to be one of the medical research community's huge focuses and challenges, and scientists in Houston are continuing to innovate new treatments and technologies to make an impact on cancer and its ripple effect. Three research projects coming out of Houston institutions are providing solutions in the fight against cancer — from ways to monitor treatment to eliminating cancer-causing chemicals in the first place.

For select indications including many primary and metastatic brain tumors, stereotactic radiosurgery (SRS) is proven to be an effective alternative to invasive surgery, thus potentially improving patient quality of life while significantly reducing the cost of care.

In a study led by Michigan Medicine, researchers combined laser imaging with artificial intelligence to help predict brain tumor diagnosis within minutes.
A new publication in Nature Medicine highlights how the NIO Imaging System from Invenio Imaging allows surgeons to get a real-time image of a piece of tissue from surgery and use artificial intelligence to get a rough diagnosis of the tissue’s composition.

A new study shows that children with medulloblastoma who were treated with radiotherapy had better intellectual outcomes when the radiation was delivered as proton beam therapy compared to traditional photon radiotherapy.

Researchers at NYU Grossman School of Medicine and the University of Michigan are proposing a new approach that may lead to more accurate brain tumor diagnoses by combining advanced optical imaging and artificial intelligence.

Johns Hopkins researchers report that a type of biodegradable, lab-engineered nanoparticle they fashioned can successfully deliver a "suicide gene" to pediatric brain tumor cells implanted in the brains of mice. The poly(beta-amino ester) nanoparticles, known as PBAEs, were part of a treatment that also used a drug to kill the cells and prolong the test animals' survival.

An optical imaging technique paired with an AI algorithm was able to analyze a tissue sample in less than 150 seconds, demonstrating how machine-learning can make a huge impact in the operating room. The AI was also able to detect some details conventional practices could miss. The new research comes as AI has recently proven to outperform humans in diagnosing breast and lung cancer.

In a paper published Monday in the journal Nature Medicine, researchers described an imaging technique called stimulated Raman histology, or SRH, that reveals tumor infiltration in human tissue by collecting scattered laser light to illuminate features not typically visible in standard histologic images.

Ground-breaking research by the University of Birmingham has discovered a new technique to assess the aggressiveness of childhood brain tumors. The study is the first of its kind and will allow clinicians to give more personalized treatments for childhood brain cancers, which currently account for one third of all childhood cancer deaths in the UK.

Glioblastoma is one of the most common and aggressive forms of brain cancer, and it is particularly difficult to treat. Now, researchers from the University of Pennsylvania School of Medicine have come up with a new approach to treatment for the disease, by growing organoids based on a patient’s own tumor to find the most effective treatments.

Lab-grown brain organoids developed from a patient's own glioblastoma, the most aggressive and common form of brain cancer, may hold the answers on how to best treat it. A new study in Cell from researchers at Penn Medicine showed how glioblastoma organoids could serve as effective models to rapidly test personalized treatment strategies.

Using an ensemble of type-II fuzzy inference system and adaptive neuro-fuzzy inference system, a novel classifying technique has been developed to classify the detected tumor incorporating the extracted features.

Immune checkpoint inhibitors are important medications that boost the immune system's response against certain cancers; however, they tend to be ineffective against glioblastoma, the most deadly primary brain tumor in adults. New research in mice led by investigators at Massachusetts General Hospital (MGH) and the University of Florida reveals a promising strategy that makes glioblastoma susceptible to these medications.

A GPS map to guide neural navigation devices developed by a Case Western Reserve University cancer researcher has shown 90% accuracy in pinpointing brain tumors and will soon be tested in real time with patients at Cleveland Clinic under a three-year, $600,000 V Foundation grant.

While all treatments help improve outcomes, immunotherapy is potentially a “game changer,” says Donald O’Rourke, director of the GBM Translational Center of Excellence at the Abramson Cancer Center.

Northwestern Medicine scientists are using an implantable ultrasound technology to help deliver treatment for glioblastoma to the brain. The researchers detailed how they used the ultrasound to open the blood-brain barrier in mice.

Scientists have developed a new gene-therapy technique by transforming human cells into mass producers of tiny nano-sized particles full of genetic material that has the potential to reverse disease processes.

Neurosurgeons in Wisconsin employ some new technology to try to better remove a complex brain tumor. Under normal white light used while operating, neurosurgeons could only see portions of the tumor. But thanks to a new dye and filter system, they can see more.

According to various recent articles and reports tracking the new trends in immunotherapy for pediatric brain tumors, recent advances in cancer immunotherapy have improved outcomes for several human cancers, and in some cases have produced dramatic responses in patients.

A common virus that is harmless to most individuals may produce an important biomarker in determining the prognosis of brain cancer patients, according to a recent study published by a student researcher at the University of Cincinnati.

Researchers at Johns Hopkins University are studying a new experimental treatment for dogs with brain cancer. They hope their research will lead to treatments for people.

A new engineering solution may help deliver tumor killing drugs directly to the brain tumor without the toxic body effects of systemic chemotherapy. The new study published in the journal Nature Scientific Reports reports on the use of coaxial electrospinning, an industrial fabrication technology, in the production of membranes that incorporate drugs to treat glioblastoma multiforme (GBM), an aggressive cancer of the brain.

While tumors are known to compromise the integrity of the blood brain barrier—a specialized vessel wall evolved to keep the brain "safe"—the makeup of the barrier is inconsistent, which prevents drugs from being uniformly distributed throughout the tumor. Unfortunately, increasing dosages to help improve drug delivery is not possible due to the adverse effects caused by drug interactions with healthy tissue, and drug penetration to the tumor core remains limited.

By combining focused ultrasound methods with different nanoparticle formulations, Researchers have investigated two strategies for improving drug penetration into brain tumors.

Medication prescribed for a certain type of epilepsy may offer a new method for treating malignant infantile brain tumors. A specific mTOR inhibitor has the ability to cross the blood-brain barrier to both reach and attack the tumor at source.

Radiotherapy is essential for treating pediatric brain tumors, but the treatment comes with the risk of cognitive impairment. Researchers at Baylor College of Medicine, Texas Children’s Hospital and the Hospital for Sick Children (SickKids) in Toronto examined children treated with two different kinds of radiotherapy—proton radiotherapy and photon radiotherapy—and found those treated with proton radiotherapy had less intellectual decline.

Researchers from the University of São Paulo (USP) in Brazil have developed a strategy for treating the most aggressive type of brain cancer in adults that combines a photoactive molecule and a chemotherapeutic agent—both encapsulated in protein-lipid nanoparticles.

The Ivy Brain Tumor Center at the Barrow Neurological Institute and SonALASense have signed an strategic agreement to jointly test a new and non-invasive drug-device combination, called sonodynamic therapy or SDT, for the treatment of recurrent glioblastoma.

The researchers showed that combining the two drugs – panobinostat and marizomib – was more effective than either drug by itself in killing DMG patient cells grown in the laboratory and in animal models. Their studies also uncovered a previously unrecognized vulnerability in the cancer cells that scientists may be able to exploit to develop new strategies against the cancer and related diseases

The researchers observed an increase in the formation of new neurons in an area that is important to the memory (the hippocampus) during the period in which they received lithium, but their maturity into full nerve cells only occurred once the lithium treatment was discontinued.

The human brain has some remarkable capabilities - including the ability to block cancer drugs from effectively reaching cancer cells in the brain. The greatest obstacle when it comes to treating cancer that has spread to the brain is the blood-brain barrier, the brain's natural defense mechanism that is a collection of blood vessels that can filter out what goes in and out of the brain.

The blood test measures the amount of cell-free DNA, or cfDNA, in the bloodstream, according to Penn Medicine News. Cancer cells and other cells shed cfDNA into the bloodstream. The researchers studied patients with glioblastoma, the most common and deadliest brain tumor, and found that those with higher bloodstream concentrations of cfDNA had a shorter "progression-free survival" than patients with less cfDNA.

A local woman who received a breakthrough brain cancer treatment is saying thank you to the team that helped save her life.
The team at Mayfield Brain & Spine is among the first in the nation to use a new kind of targeted therapy to treat recurrent brain tumors. It is called GammaTile.

Chemical analysis of blood samples, combined with an artificial intelligence program, could speed up the diagnosis of brain tumours, according to research presented at the 2019 NCRI Cancer Conference. Researchers say their test, which works by detecting chemical clues shed by brain tumours into the blood, could help improve brain tumour survival by making diagnosis quicker and more efficient.

Glioblastoma (GBM) is the type of aggressive brain cancer that took the life of Arizona Senator John McCain in 2018. A notoriously difficult cancer to treat, there have been several high-profile drug failures recently. There’s new hope, however. Researchers at Sweden’s Karolinska Institutet identified 10 potential drug targets for glioblastoma and published the results in the journal Cell Reports.

There is amazing new technology that’s helping surgeons perform the most delicate of all operations.

An adhesive hydrogel that reveals and kills cancer cells could mean the end of debilitating radiation, chemotherapy and surgery for children with brain cancer, a lethal disease that impacts thousands of pediatric patients each year.

Researchers have recently found a compound that can eradicate drug-resistant glioblastoma-initiating cells (GICs). This compound, could potentially be used to eradicate refractory tumors with minimal toxicity.

The combination of advanced imaging and artificial intelligence (AI) could make a brain tumor blood test leading to earlier diagnoses – and perhaps better prognoses, according to new research. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, coupled with machine learning, could differentiate cancer patients and controls with better than 90% sensitivity and specificity.

A new study describes the use of an orally ingested agent called 5-aminolevulinic acid (5-ALA) to confirm the diagnosis of the aggressive brain tumor called glioma. This agent causes a naturally occurring fluorescent molecule called protoporphyrin IX (PpIX) to accumulate inside the tumor cells selectively.

A chemical that has improved surgeries for brain cancer by making tumor cells fluorescent may also help doctors safely diagnose the disease and monitor its response to treatment, according to a new study led by investigators at Massachusetts General Hospital

A new blood test that can detect brain cancer has been developed in the United Kingdom. It’s cutting edge technology uses artificial intelligence and has a high accuracy rate. This new blood test sounds very promising. Now what the researchers did was to use an infrared light technique to produce what’s called a biochemical ‘fingerprint’.

A new blood test that can detect brain cancer has been developed in the United Kingdom. It’s cutting edge technology uses artificial intelligence and has a high accuracy rate. This new blood test sounds very promising. Now what the researchers did was to

Researchers for the University of Strathclyde have developed the test, which uses infrared light to produce a "bio-signature" of a blood sample and applies artificial intelligence to check for the signs of cancer.

Researchers at Tufts University have just developed a way to create an environment that closely mimics that of the brain and were able to grow pediatric and adult tumors within it. The microenvironment allows for non-invasive imaging of the tumors and for easy manipulation of the cells growing within.

Tiny bubbles in the brain might offer some respite for some. An experiment using those bubbles to help treatment drugs get to places normally out of reach. The technique could give patients with glioblastomas far longer lives. It could also offer a way to treat other devastating brain diseases such as Alzheimer’s and Parkinson’s.

Ribociclib, a drug that was recently FDA-approved for breast cancer, is part of a new class of drugs that target cell division thereby suppressing cancer progression.

The Ivy Brain Tumor Center at Barrow Neurological Institute, today announced a new collaboration with QED Therapeutics, Inc., a subsidiary of BridgeBio Pharma, Inc., (Nasdaq:BBIO) to investigate the FGFR1-3 tyrosine kinase inhibitor, infigratinib, for the treatment of glioblastoma (GBM).

Versions of an antibiotic drug called DON first isolated from soil bacteria more than 60 years ago have shown promising signs of extending survival in mice models of especially lethal pediatric brain tumors marked by the high expression of a cancer-causing gene known as the MYC oncogene.

A drug used to treat chronic myeloid leukemia appears to be more effective at stopping a type of medulloblastoma in mouse models than existing treatments for the deadly pediatric brain tumor, reports a multi-institutional team led by researchers

A research team from the University of Georgia’s Regenerative Bioscience Center has found that a compound molecule used for drug delivery of insulin could be used to treat glioblastoma, an aggressive, usually fatal form of brain cancer.

Researchers found a positive and negative correlation with a host of blood molecules, including the ratio of neutrophils to lymphocytes, platelets to lymphocytes and monocytes to lymphocytes. Some of these were able to predict a good or bad outcome, while others were limited to only childhood tumors.

A research team from the University of Georgia's Regenerative Bioscience Center has found that a compound molecule used for drug delivery of insulin could be used to treat glioblastoma, an aggressive, usually fatal form of brain cancer.

Researchers have developed a new model to optimize radiation therapy and significantly increase the number of tumor cells killed during treatment. The new mathematical model, outlined in a recent study can use information about where the majority of the cells in a tumor are located allowing for radiation treatment to be administered to the densest area.

A new therapy for treating glioma, an aggressive brain tumor, was shown to be safe in patients and cleared other important hurdles, according to a phase 1 trial recently published in Science Translational Medicine. The therapy induces production of a cancer-fighting cytokine in the brain, which could be less toxic and more effective than delivering the cytokine itself intravenously,

In their initial report, the researchers focused on diffuse intrinsic pontine gliomas, or DIPG, an inoperable brainstem tumor found in children. The team concluded that a specific class of drugs have the potential to kill mutant tumor cells.

For the first time, scientists have shown that a new type of immunotherapy can reach and treat brain cancer from the bloodstream in mice. The nano-immunotherapy stopped brain tumor cells multiplying and increased survival. Scientists who devised an immunotherapy that can cross the blood-brain barrier in mice hope that the findings may one day translate to humans.

A team of students from Ohio has created a new drug that has the potential to treat one of the deadliest forms of brain cancer. The breakthrough is expected to end the need for surgeries that are known to have side effects and death risk. Pharmacy students developed the oral compound RK15. They said the drug mainly targets the aggressive brain cancer glioblastoma and is very reactive to killing the harmful cells

A new study gives insight into how immunotherapies, treatments that help the body's immune system fight cancer, might one day be delivered directly to the brain in order to treat brain tumors. The study demonstrated that a new type of nano-immunotherapy traversed the blood-brain barrier in laboratory mice, inducing a local immune response in brain tissue surrounding the tumors. The tumor cells stopped multiplying, and survival rates increased.

Researchers led by Texas A&M University’s College of Veterinary Medicine & Biomedical Sciences have identified a new pathway they believe may help suppress the development of glioblastoma tumors. The pathway in question involves the AH receptor, which controls the expression of a diverse group of genes.

New research could be the first step towards developing a blood test to diagnose glioblastomas. A team from Professor Georgios Giamas' lab at the University of Sussex has identified novel biomarkers within bodily fluids, which signal the presence of the tumour. Cancer biomarkers are molecules that are either exclusively found or over-expressed in cancer cells, as compared to 'normal', healthy cells. Biomarkers can be considered as biological signatures for a disease, as they indicate the presence of cancer in the body.

Researchers at Tel Aviv University found that immunotherapy with vaccines based on synthetic DNA may be an effective means of preventing brain metastases. A new Tel Aviv University study has found that a known adjuvant – an ingredient used in vaccines that enhances the immune response – that contains synthetic DNA, may be an effective in preventing brain metastases in patients whose primary tumors have been excised.

Report analyses the Brain Tumor Diagnosis And Therapeutics market By Type, By Applicatio, assesses the market By Region (Europe, Asia Pacific, North America, Rest of the world) and By Country (United Kingdom, Germany, U.S., Canada, Mexico, Japan, India, France, China, Australia), assesses the market for the historical period of 2014-2018 and the forecast period of 2019-2024.

A new drug, known as IP1867B, could be used for future treatments of brain tumors. The research team showed that IP1867B worked with existing cancer treatments boosting their effectiveness and, in some cases, restored sensitivity to some treatments.

Forrest General became the first hospital in Mississippi to use Gleolan™ (aminolevulinic acid HCl) for enhanced visualization of high-grade gliomas (including glioblastomas), or tumors occurring in the glial cells of the brain. This solution causes tumor cells to glow red under blue light allowing the neurosurgeon to remove as much of the tumor as possible without affecting healthy brain cells.

An international team led by researchers has discovered the energy production mechanism of cancerous cells that drives the growth of the nucleolus and causes tumors to rapidly multiply. The findings could lead to the development of new cancer treatments that would stop tumor growth by cutting the energy supply to the nucleolus.

Massachusetts General Hospital (MGH) investigators have created a new method that could make immune therapy more effective again brain tumors and expand its use against other types of solid tumors.

The Ivy Brain Tumor Center at the Barrow Neurological Institute, has released the results of its recent Phase 0 clinical trial of the breast cancer drug ribociclib (Kisqali®) for the treatment of recurrent glioblastoma. The agent, recently approved by the FDA for advanced breast cancer, is part of a newly-discovered class of targeted therapy that undermines cancer cell division and could form the backbone of a new drug cocktail for patients with malignant brain tumors like glioblastoma.

Investigators at St. Jude Children's Research Hospital and Massachusetts General Hospital, alongside others, have revealed the cells of origin for specific subtypes of medulloblastoma, the most common malignant pediatric brain tumor. The work also has implications for how medulloblastoma is classified, which may eventually shape clinical care.

In immunotherapy for cancer, the buzziest area of research is combinations: one checkpoint drug with another, say, or a checkpoint drug with chemotherapy. The latest brainstorm is an acronym lover’s dream team: CAR-Ts and BiTEs.

A combination of chemotherapy drugs during brain cancer surgery using a biodegradable paste, leads to long-term survival, researchers at the University of Nottingham have discovered. In a new study published in Clinical Cancer Research, scientists found a significant survival benefit in rat models with brain tumors when a combination of two chemotherapy drugs, (etoposide and temozolomide), were delivered using a biodegradable polymer called PLGA/PEG.

"Tumor treating fields are a technology that creates a low level electrical field and it disrupts cells that are trying to divide," said David Peereboom, M.D., of Cleveland Clinic. "And since it is cancer cells that are actually the ones dividing, those get killed preferentially."

Researchers at the University of Nottingham have discovered that repurposing a heart drug could significantly increase the survival rate for children with ependymoma - a type of brain tumour.

Karyopharm Therapeutics’ new product, Xpovio to treat multiple myeloma, is the first entry in a class known as Selective Inhibitor of Nuclear Export (SINE) drugs, and the FDA approval the company secured for the product earlier this month is quite limited. But one research group sees potential for Xpovio in another cancer type: glioblastoma.

Toronto's St. Michael's Hospital and The Hospital for Sick Children (SickKids) led the new research which suggests the protein ID1 is crucial to tumor initiation and development and also impacts the response of the disease to chemotherapy.

AIVITA Biomedical, Inc., a biotech company specializing in innovative stem cell applications, announced today new clinical data from its ongoing glioblastoma Phase 2 clinical trial, investigating AIVITA's platform immunotherapy targeting cancer stem cells.

After surgery or biopsy, all patients received radiotherapy & chemotherapy with the chemotherapeutic agent temozolomide; then received temozolomide again and 2/3 of them (466) were additionally treated with TTF. The study lasted 24 months, but there was an interim analysis for the outcome of mortality after 18 months. Due to positive results in this analysis, participants in the control group were then free to switch to the TTF study arm.

Research is currently pursuing several highly promising approaches in the fight against cancers that give rise to metastases in the brain. A high-level international symposium is currently taking place to discuss new approaches to prevention and treatment. "Our aim must be to prevent brain metastasis from occurring in the first place,". However, new forms of treatment are now also available for patients who already have secondary tumors in the brain.

A team of Turkish researchers developed a nano-technological drug delivery system that can overcome the natural defense mechanism that prevents drugs from reaching the tumor in brain cancer patients, without harming any healthy tissues, unlike the chemotherapy method that is generally used in treatment of the disease.

It can be hard for surgeons to tell the difference between glioblastomas and brain tissue. A new drug is helping by turning the tumor bright pink.

Glioblastomas attract "turncoats." These are macrophages, a type of immune cell, which promote tumor progression and mask tumors from the immune system's scrutiny. To better understand the cells that brain tumors recruit, scientists led by Dolores Hambardzumyan, Ph.D., developed advanced imaging techniques to visualize macrophages found in the brain tumors of living mice.

Data reinforce the safety profile of GammaTile Therapy, a surgically targeted radiation therapy (STaRT) that is designed to delay tumor regrowth for patients with recurrent intracranial neoplasms (brain tumors).

Dr. Ahluwalia is helping lead a clinical trial of a new glioblastoma treatment called SurVaxM. It’s an immunotherapy for brain cancer that works by stimulating a person’s own body to kill tumor cells that contain survivin, a protein that helps those cancer cells resist traditional treatments.

Using a new approach that combines data from human tumors grown in mice with data from The Cancer Genome Atlas, a team led by University of Michigan Rogel Cancer Center researchers has uncovered several previously unknown biomarkers for glioblastoma, the most common malignant brain tumor.

A common genetic deficiency empowers glioblastoma to broadcast a molecular message to the wrong type of immune cell, summoning macrophages that protect and nurture the brain tumor instead of attacking it, researchers at The University of Texas MD Anderson Cancer Center report in Cancer Cell.

The fluorescent tumor technology allows neurosurgeons to identify and remove as much of the tumor as they can while leaving healthy brain tissue intact. Doctors say it's a game-changer.

A Kuwaiti medical team succeeded in eradicating a brain tumor using the surgical technique (Curve), the latest in specialized treatment.

For brain tumor patients who are resistant to chemotherapy, radiation and existing treatment options, surgery are central to survival.
7D Surgical, one of the leaders in advanced optical technologies and vision-based surgery algorithms, flagship product, the MvIGS technology has the power to obtain hundreds of thousands of virtual fiducials leveraging the patient’s anatomy which allows for immediate cranial registration in just about any surgical position.

The blood-brain barrier normally blocks many types of drugs from entering the central nervous system, making it hard to treat brain disorders. Scientists hope to solve that problem with the help of an unlikely ally: the jawless sea lamprey. And they have promising early evidence that a molecule derived from the creature could be used to ferry drugs directly to previously difficult-to-access diseased sites in the brain.

The young boy was running out of time. His brain tumor was growing so fast that he had trouble putting words together. All standard cancer treatments had failed. Then last summer the child started taking an experimental pill that targeted a rare genetic mutation found inside his tumor. Within months, the malignant growth started to shrink and his cognitive symptoms eased. Soon the tumor had all but disappeared. Today he’s still on the drug but back at school and doing well.

A new Northwestern Medicine study finds that a combination of two mutations cause a form of pediatric brain tumors to become more deadly, according to findings published in Nature Communications. An experimental drug targeting one mutation prolonged survival in models of diffuse intrinsic pontine glioma (DIPG), but questions remain about the drug’s efficacy,

A novel imaging technique that uses a synthesized form of scorpion venom to light up brain tumors has shown promise in a clinical trial. The imaging system enables neurosurgeons to better see malignant growths that often are difficult to fully eliminate.

Doctors at Swedish Hospital in Seattle say they’re on the verge of a breakthrough they hope will add years of survival for brain cancer patients. KIRO 7 went to the lab this week to see the cutting edge research.

A new cancer drug has been green-lighted for a Phase 1 study on children. BXQ-350 is manufactured by Bexion Pharmaceuticals in Covington where it will be tested on children with solid tumors, brain tumors and diffuse intrinsic pontine gliomas (DIPG), a type of brain tumor. The Phase 1 study with adults showed promising results, with patients tolerating the drug well and reporting no serious side effects.

Glioblastoma, also known as GBM, is the most aggressive cancer that begins within the brain. It is one of the deadliest form of cancer because of the limited treatment options. A team of scientists “reverse engineered” GBM cells derived from patients to uncover multiple potential targets for this hard-to-treat cancer.

Brain cancer is one of the deadliest cancers. The surgery to remove the tumor is often very invasive. But now engineers at Vanderbilt University have designed a device that can make surgery easier for both doctor and patient, and the same technology also holds promise for lung cancer diagnosis.

Researchers have concocted a glioblastoma-on-a-chip. Chip-based models of various organs and diseases—including many cancers—have debuted in the last few years. They are constructed by lining a plastic microchip with live human cells that mimic a particular organ or disease in order to simplify, cheapen and increase the efficiency of drug testing.

There could be new treatments on the horizon for DIPG, a devastating form of brain cancer that afflicts young children and is currently incurable. Recent experiments in animal models of the disease have identified an experimental drug that effectively destroys DIPG cells. And a team of Rockefeller scientists just figured out how this promising compound works.

A phase I clinical trial that set out to assess the safety of a new combination therapy for a type of aggressive brain tumor has found the treatment to be well tolerated in patients. The trial used a treatment combination of ADI-PEG20, pemetrexed and cisplatin, which showed encouraging efficacy in patients with recurrent high-grade gliomas, a disease for which little progress has been made over the last few decades.

A new study led by Massachusetts General Hospital (MGH) investigators finds that radiation therapy may increase the uptake of therapeutic nanoparticles by glioblastomas, raising the possibility of using both growth-factor-targeted and immune-system-based therapies against the deadly brain tumor

New equipment at Mission Hope Cancer Center is raising treatment there to an advanced level. "This is a linear accelerator stereotactic radiosurgery system that we have just installed here at Mission Hope,” said Dr. Case Ketting, a radiation oncologist, while pointing at the Mission Hope TrueBeam radiotherapy machine.

The aim of this study was to determine the experience of patients with brain tumors and their carers across distinct parts of their treatment pathway and identify their views on potential service gaps in need of addressing.

Just when you thought you've seen it all as a Long Islander, Northwell performs another first. Neurosurgeons at North Shore University Hospital removed a glioblastoma brain tumor using a new imaging tool that transforms the way diseased cells are targeted - the first surgery of its kind on Long Island.

Brain cancer is one of the deadliest cancers. The surgery to remove the tumor is often very invasive. But now engineers at Vanderbilt University have designed a device that can make surgery easier for both doctor and patient, and the same technology also holds promise for lung cancer diagnosis.

A new compound discovered by scientists at Scripps Research may prove to be a powerful weapon in the fight against one of the most aggressive and deadly types of cancer. Just like the cancer it fights, the compound is incredibly strong, selectively targeting the cells that allow glioblastoma multiforme (GBM) to rapidly take over the brain.

A Children's Oncology Group study shows that postoperative radiation improves outcomes for children with ependymoma, even those with historically poor prognoses and the very young

A study found that an inhibitor of an enzyme called ACVR1 slows tumor growth and increases survival in an animal model of diffuse intrinsic pontine glioma (DIPG) -- the most deadly brain tumor in children.

An extremely powerful MRI scanner was used to image proteins in the brain of cancer patients and has shown that protein content correlates with treatment

Researchers report inhibiting activity of a specific protein in glioblastomas boosts their sensitivity to radiation, improving treatment prospects for one of the most common and aggressive forms of brain cancer.

In a study of mice and human brain tumors, researchers searched for new treatments by exploring the reasons why some patients with gliomas live remarkably longer than others. The results suggested that certain patients’ tumor cells are less aggressive and much better at repairing DNA than others but are difficult to kill with radiation.

Scientists at Iran’s Royan Research Institute have successfully tested the treatment of brain tumors with the help of natural killer cells. The laboratory phase of the test has been carried out and the researchers are waiting for the authorisation and funding required to perform it on humans. A spokesman for the Royan Institute Cancerous Stem Cells, told IRNA that researchers were able to identify a group of natural killer cells that could eliminate the brain tumor cells in the pre-clinical phase (animal experiments).

Dogs have played a significant role in the development of human civilization, and in modern times remain as close to humans as ever.
However, dogs are as susceptible to developing gliomas as humans are. Previous research has shown that adult dogs often develop these cancers at around the same age in human years as children, suggesting that there may be a link between brain age and glioma development.

ZAP Surgical Systems, Inc. today announced an agreement with Bonifatius Hospital in Lingen, Germany to acquire ZAP-X® stereotactic radiosurgery (SRS) technology. SRS is a well-known and effective procedure for non-invasively treating select brain tumors and brain metastases.

The results suggested that certain patients’ tumor cells are less aggressive and much better at repairing DNA than others but are difficult to kill with radiation. The researchers then showed that combining radiation therapy with cancer drugs designed to block DNA repair may be an effective treatment strategy.

Artificial intelligence can help doctors and patients with meningiomas make better treatment decisions, according to a new study. While eningiomas generally have better outcomes than other brain tumors, there is a great deal of variability in aggressiveness. Being able to predict malignancy and accurately estimate survival is therefore incredibly important in deciding whether surgery is the best option for the patient.

In experiments with human cells and mice, researchers at the Johns Hopkins Kimmel Cancer Center report evidence that combining the experimental cancer medication TAK228 (also called sapanisertib) with an existing anti-cancer drug called trametinib may be more effective than either drug alone in decreasing the growth of pediatric low-grade gliomas. These cancers are the most common childhood brain cancer, accounting for up to one-third of all cases.

Researchers at Duke University have developed an innovative brain tumor extracting technology called the Tumor Monorail.
The novel biomedical tool has been referred to as a "Pied Piper" device by the university as it essentially functions by tricking aggressive brain tumors into migrating into an external container, saving the brain from their effects.

It sounds like science fiction, but doctors at University of Minnesota Health are the first in the country to offer an implantable form of radiation to target brain cancer. The implant is called GammaTile Therapy and Linda Tinega was the first patient in Minnesota to receive it.

As immunotherapy is shaping the treatment landscape for many other cancers, it continues to lag in the field of glioblastoma (GBM). However, according to recent research conducted by researchers at The University of Texas MD Anderson Cancer Center, there may be hope on the horizon.

A “tumor monorail” that lures aggressive brain tumor cells to their death in an external container has won “breakthrough device” designation from FDA. The purpose of the device is not to destroy the glioblastoma tumor, but to halt its lethal spread, making the disease more of a condition to manage than a death sentence.

Giving patients with lethal brain tumors a powerful new form of cancer treatment before they underwent surgery helped them live longer on average than patients who started the drugs after surgery, researchers reported in a study published Monday.

A device that aims to draw aggressive brain tumor cells to the exterior of the brain, where they can be collected and extracted, has received FDA's breakthrough designation, meaning the agency will expedite its review.

Researchers at the UCLA seeking new treatments for the cancer, called recurrent glioblastoma, found that patients who were treated with Keytruda before the removal of a brain tumor survived an average of 417 days -- nearly double the historic average for the deadly disease.

A new device nicknamed the “Tumor Monorail” has just received breakthrough device designation by the U.S. Food and Drug Administration (FDA). The device is a network of extremely thin fibres made from a gel-like substance that mimics the properties of a brain.

The researchers plan to screen each tumor using the UCSF 500 Cancer Gene Panel, which can detect the most frequently occurring mutations. Tumors also will undergo whole-genome and whole-exome sequencing for all DNA and genes along with RNA sequencing.

GT Medical Technologies has raised $10 million in a series A round led by Medtech Venture Partners with participation from BlueStone Venture Partners. The Tempe, AZ-based company has developed the Gamma Tile, a surgically targeted radiation therapy for patients with brain tumors.

Groundbreaking technology at Rady Children's Hospital is helping save lives. The hospital is using a new proton therapy which proved to be successful in a local gymnast's battle against a brain tumor.

Researchers identified a series of cancer-causing driver gene mutations and discovered that medulloblastoma is perhaps an even more dynamic and variable tumor than expected.

Researchers from Sanford Burnham Prebys Medical Discovery Institute (SBP) developed a targeted treatment that works by blocking a protein called lysine demethylase 1 (LSD1) in group 3 medulloblastoma, the deadliest subtype of the disease.

Intermountain Healthcare is utilizing 3D modeling technology to improve patient experiences and help surgeons prepare for difficult surgeries. Still, in a testing phase, some Intermountain patients have been able to experience this new technology as they underwent treatment for significant medical conditions.

There's new hope for patients suffering from Glioblastoma, a lethal form of brain cancer that took the lives of Sens. John McCain and Ted Kennedy. Southern California surgeons are now using an illuminating new procedure to help improve the odds of survival.

Researchers from Memorial Sloan Kettering Cancer Center (MSKCC) in New York have pioneered a new type of liquid biopsy that might be able to monitor the progression and response to treatment of a type of brain tumor. However, unlike most liquid biopsy tests to detect circulating tumor DNA (ctDNA), it does not use blood.

Now, scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) have reported that a targeted therapy that blocks a protein called LSD1 was able to shrink tumors in mice with a form of pediatric brain cancer known as medulloblastoma.

Patients with Brain Cancer Are Just a Click Away from a Second Opinion

Penn Medicine is now offering second opinions to patients, without them ever having to step foot inside the Penn Brain Tumor Center in Philadelphia. A new telemedicine second opinion program for brain tumors is being offered to patients in Florida, Georgia, Maryland, North Carolina, Pennsylvania (not in the Philadelphia region since these patients can receive an in-person second opinion), South Carolina, Virginia and Washington D.C. The institution hopes to expand the program to more states.

There's a glimmer of hope in treating the deadliest form of brain cancer, thanks to a drug trial happening right here in the Valley. Glioblastoma made headlines when the late Senator John McCain was diagnosed in 2017, but sadly many families know firsthand just how devastating this disease can be.

In a new study, this effect was reversed in mice when they were administered lithium.1 Solid stress was defined by the study authors in Nature Biomedical Engineering as “the compressive and tensile mechanical forces exerted by the solid components of the tissues.”

An international team of researchers has discovered a new mechanism that will better activate the immune system against cancer.
The mechanism allows immune cells to detect and destroy cancer cells better than before, according to the study published this month in the journal Nature.

Researchers at Memorial Sloan Kettering Cancer Center in New York have discovered that cancer cells with high numbers of faults in their DNA are more likely to respond to immune checkpoint inhibitors (ICI), a major class of immunotherapy drugs, which includes Keytruda.

Brain Tumor Diagnosis and Treatments Market Report 2018 Provides reviews of Brain Tumor Diagnosis and Treatments Industry, including Its types, application, fabricating innovation, industry chain investigation and most recent market progression.

Glioblastoma is a deadly brain cancer that grabbed headlines for claiming the lives of Sens. Edward Kennedy and John McCain. Michael Hammer, Ph.D., and a team of University of Arizona researchers have discovered that the disease could be “tricked” into sparing more of its victims.

To treat cancer in organs like the liver, doctors are able to deliver drugs via catheter directly to the tumor, but leftover drug can escape and affect healthy organs elsewhere in the body. A drug sponge developed by UC Berkeley chemical engineers could sop up the residual drug, lessening side effects.

An international consortium led by researchers at Columbia University Vagelos College of Physicians and Surgeons, set out to better understand what occurs in NF1-glioma. Researchers analyzed tumor samples from 56 patients with NF1-glioma.

Three teams working independently have uploaded papers to the bioRxiv preprint server outlining their research involving attempting to use neural network-based AI systems to translate brainwaves into decipherable speech.

Travel will no longer be needed to get second opinions from brain tumor experts at Penn Medicine. Patients around the country can now easily get a second opinion on the best treatment for their brain tumors without hopping on a plane, bus or taking a long car ride to Philadelphia.

A research team has reason to celebrate after the Food and Drug Administration granted it approval on Friday to begin a clinical trial for a new pediatric brain cancer drug, one that might have ended up overlooked by pharmaceutical companies.

People suffering from two of our most deadly diseases may someday benefit from a new approach being studied at Virginia Tech. Glioblastoma, the deadliest form of brain cancer, and Alzheimer’s disease, the fifth largest killer of people over 65, share a similar disease process even though they’re very different conditions.

A group of University of Arizona researchers believe they've found an important clue in the fight against the kind of cancer that killed Sen. John McCain in August. That clue lies in the DNA found in the cells of long-term and short-term survivors of glioblastoma, an aggressive form of brain cancer.

Doctors usually use the biological characteristics of tumors to observe the progress and response to treatment, such as if there are gene mutations or malignant features. Previous studies have shown that identifying the biological characteristics may contribute to better treatment and may increase survival rates.

Optune, a skullcap developed in Israel that fights cancer using electric frequencies, has extended the lives of patients with glioblastoma, the most aggressive form of brain cancer, by months or even years.

Iranian scientists have managed to produce brain cancer vaccine, an expert in immunology whose company is involved in production of the vaccine has said.

Migraines and headaches often occur among patients with brain tumors and are the most common complaint as the initial symptoms among these patients. Based on their high prevalence, there has been speculation as to whether headaches and migraines should be treated as risk factors for the development of brain tumors or if they should be considered the “first sign” of brain tumors.

Favorable results of Laser ablation after stereotactic radiosurgery (LAASR) clinical study. LAASR confirmed the beneficial outcomes of laser interstitial thermal therapy (LITT) in a group of 42 patients with brain lesions that recurred following stereotactic radiosurgery (SRS) for metastatic brain tumors.

U.S. Sen. John McCain from Arizona recently died after fighting glioblastoma, the most aggressive and deadliest kind of brain tumor. Now, other patients whose brain tumors come back have a revolutionary new option for treatment.

As part of their research, Karni and PhD student Maxim Mogilevsky designed a molecule that inhibits glioblastoma tumor growth by regulating the proteins it produces.

But now, researchers at the Hebrew University of Jerusalem, Israel have proposed a new treatment for glioblastoma – the type of cancer from which John McCain suffered – that has the potential to improve and lengthen patients’ lives.

A new trial at the University of Minnesota is looking to build on one of the most promising brain cancer treatments in more than a decade.

The presence of visible fluorescence can serve as an intraoperative diagnostic surgical biomarker of high-grade glioma within a brain tumor, according to a study presented at the 2018 National Cancer Research Institute Cancer Conference, held from Nov. 4 to 6 in Glasgow, Scotland.

Liquid biopsies are fluid samples from patients, for example from the blood or urine, which provide a less invasive way to monitor disease compared to tumour biopsies. A less intrusive test could be hugely beneficial for brain tumours where collecting samples can be difficult and risky for patients.

Better treatments for medulloblastoma, ideally are sorely needed. But developing new cancer drugs is a time-consuming process, relying on multiple years of clinical research, followed by a minimum 10-month FDA approval process. Now, thanks to a new computational approach, the FDA’s extensive approval process could become a benefit for drug discovery instead of just a hurdle.

The results of the clinical trial found a 26 percent relative reduction in risk of cognitive toxicity following whole-brain radiation therapy with hippocampal avoidance versus whole brain radiotherapy. The cognitive function benefit of hippocampal avoidance did not differ by age.

A new use of stem cells has been identified that could clear a revolutionary pathway to making immunotherapy effective in brain cancer.

A new technique for “listening” may mean the difference between brain impairment and the retention of full cognitive capabilities following brain tumor removal.

A research team led by the University of Alabama at Birmingham is launching a study to find a better model for glioblastoma, a particularly devastating type of brain tumor, to help determine the most appropriate treatment modality. The $3.6 million, five-year U01 grant award is funded by the National Cancer Institute.

Researchers from Memorial Sloan Kettering Cancer Center (MSK) and Weill Cornell Medicine tested an approach that appears to be safe and effective at distributing a drug throughout diffuse intrinsic pontine gliomas (DIPG), a tumor that starts in the brain stem.

In children with diffuse midline glioma (DMG), liquid biopsy based on analyses of circulating tumor DNA (ctDNA) in cerebral spinal fluid (CSF) or plasma shows promise for detecting mutational load and may serve as tool for assessing tumor response to treatment, researchers say.

New research shows a specific protein regulates both the initiation of cancer spreading and the self-renewal of cancer cells in medulloblastoma, a type of pediatric brain cancer.

Dutch researchers have used augmented reality to help pinpoint brain tumors before surgically removing them. They found the technique was nearly as accurate as standard neuronavigation, and it has helped improve understanding of the anatomy and efficiency during a procedure.

Our Beneficiaries

  • University of AZ Research Centers
    University of AZ Research Centers